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Abstract
The problem of camera-based relative localization and stabilization
of multiple Micro Aerial Vehicles (MAVs) is tackled in this thesis. A
relative localization system, which is able to work without any markers
or other special equipment on the MAVs, is presented. The system
utilizes a convolutional neural network for object detection in an image,
which is trained to detect the MAVs. It was designed and implemented
to run onboard our MAV platform in real-time in order to enable
relative stabilization of several MAVs in a formation or swarm-like
behavior. Performance and limitations of the system were evaluated
in simulations. Furthermore, capabilities for relative stabilization were
demonstrated in simulations as well as in real-world experiments.
The proposed system proved to be robust and is ready for practical
deployment.

Keywords: convolutional neural network, micro aerial vehicle,
relative localization, computer vision, robotics, cybernetics

Abstrakt
Tato práce je zaměřena na problematiku relativńı lokalizace a stabilizace
bezpilotńıch helikoptér pomoćı kamery. Je představen systém relativńı
lokalizace, který nevyžaduje žádné značky ani speciálńı vybaveńı na
bezpilotńı helikoptéře. Tento systém využ́ıvá konvolučńı neuronovou
śıt’ pro detekci objekt̊u v obraze, která je natrénována na detekováńı
bezpilotńıch helikoptér. Byl navržen a implementován tak, aby fungoval
na palubńım poč́ıtači naš́ı experimentálńı bezpilotńı helikoptéry v
reálném čase, za účelem použit́ı tohoto systému pro relativńı stabilizaci
několika helikoptér nebo pro rojové chováńı. Výkony a omezeńı tohoto
systému byly ověřeny v simulaćıch i v experimentech v reálném světě.
Navrhovaný systém prokázal svoji robustnost a možnost nasazeńı v
praxi.

Kĺıčová slova: konvolučńı neuronová śıt’, bezpilotńı helikoptéra,
relativńı lokalizace, poč́ıtačové viděńı, robotika, kybernetika
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1 INTRODUCTION

1 Introduction

In this thesis, relative localization of Micro Aerial Vehicles (MAVs) from a camera im-
age using a Convolutional Neural Network (CNN) for image processing is tackled. Robot
localization is a necessary prerequisite for deployment of mobile robots and teams of mobile
robots. A precise mutual localization among the robots is required in these applications,
such as in swarm robotics [1, 2], for collision avoidance [3, 4, 5], or even in non-cooperative
tasks like interception of intruding MAVs [6]. Absolute position of a robot in a global coor-
dinate system is not always as important as relative position of multiple robots. Currently,
robot localization is often solved by using a Global Navigation Satellite System (GNSS)
[1, 3] or IR-based motion capture systems such as Vicon1 or Optitrack2 [7], but these sys-
tems have serious disadvantages. GNSS can provide relatively precise global localization,
but it is not always available, its precision may be negatively affected by the environment,
and it can be easily jammed [8, 9, 10]. Motion capture systems offer sub-millimeter pre-
cision at the cost of very expensive specialized hardware, which has to be installed and
calibrated in the area of deployment as well as on the robots. These requirements limit
their usability in real applications.

All these circumstances lead to a demand for a simple, mobile and ideally onboard
relative localization systems. Computer vision-based systems have the advantage that the-
oretically they do not require extra hardware except for a camera, but most of the state
of the art computer vision relative localization systems also rely on markers, installed on
the robots to be localized [11, 12, 4]. This is usually not a big problem for ground robots,
performing cooperative tasks, but the extra weight and volume of the markers can be a dis-
advantage especially for aerial robots. Carrying markers is also not an option under some
circumstances, such as in situations with hostile robots, where the enemy robots cannot
be expected to carry a compatible marker in order to be localized.

Thanks to the recent advancements in computer vision using Convolutional Neural
Networks (CNNs) [13], new methods for fast object detection from camera image are
available [14, 15, 16, 17, 18, 19, 20, 21]. These methods can potentially be used for relative
localization of robots, which would have the advantage of the computer vision-based relative
localization without the need for markers on the localized robots. This is because the neural
network can be trained to directly detect selected robots. It may therefore enable using
the relative localization also for non-cooperative tasks. On the other hand it brings new
difficulties, such as the relatively high computational intensity of CNNs, which has to be
overcome to enable real-time relative localization.

In this thesis, the relative localization of MAVs from camera image using CNNs is
implemented. An onboard camera provides the image stream and a CNN running on an
onboard PC of the MAV detects neighboring MAVs in the image. These detections are used

1https://www.vicon.com/motion-capture/engineering
2http://optitrack.com/motion-capture-robotics/
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1 INTRODUCTION

to estimate the relative position of the MAVs. A neural network structure was designed
based on the YOLO [14, 15] neural network, which is a state of the art object detector with
very good precision and speed of detection. The neural network was implemented to run
on an MAV platform (see Figure 1), developed by the Multi-robot Systems Group from the
Faculty of Electrical Engineering, Czech Technical University in Prague, for the MBZIRC
competition3. Hardware of the MAV platform is described in detail in [22, 23, 24]. Control
algorithms of the platform are described in [25, 26]. The used neural network is described
in section 2. It was trained on a hand-labeled dataset, which was created specifically for
this purpose, and then it was used as a part of the relative localization system, presented
in section 3. The system was tested in simulations (see section 4.1), as well as in real-world
experiments in two leader-follower scenarios (described in section 5).

Figure 1: Photo of the MAV platform used in the experiments.

1.1 Related work

Robot localization in the context of multi-robotic systems can be divided into two main
categories: absolute localization and relative localization. Absolute localization systems
relate the position of the robots to a static ground truth coordinate system (CS). This
approach has its advantages, such as an inherent resistance to integrative errors because
the ground truth CS is static, and in some cases very good precision. The main disadvantage

3http://www.mbzirc.com
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1 INTRODUCTION

of these systems is that they usually rely on a pre-installed infrastructure to provide the
ground truth CS, which is the reason why they are not usable in all scenarios.

The Global Navigation Satellite Systems (GNSS, e.g. GPS, Galileo, etc.) are an exam-
ple of an absolute localization system. GNSS systems have limited usability in obstructed
areas (such as indoor areas, dense urban areas or woods), because they rely on the satellite
signals. Another typical example are camera motion capture systems, which are constrained
to laboratory conditions, because they require setup and calibration of the cameras. How-
ever these systems can still be used in laboratory experiments or in specific conditions,
such as in open outdoor spaces, since they offer excellent precision, and are often used as
ground truth measurements to evaluate robotic experiments [1, 3].

Another type of absolute robot localization is Simultaneous Localization and Mapping
(SLAM), where a map is being constructed in which the robots are being localized. Thus it
can be also used for localization of multiple robots if they can share information from the
map. An example of such system is in [27], where a SLAM system for a group of cooperating
Unmanned Ground Vehicles (UGVs), equipped with 3D LiDAR sensors is presented and
evaluated in real-world experiments. Another example is in [28], where the authors propose
a multi-camera visual SLAM system. The cameras are carried by MAVs and features from
the camera images are used to create a map in which all MAVs are localized. The system
performance is demonstrated in several experiments.

Knowing the absolute location is not always required in robotics, and in some scenarios
only relative positions of the robots are important. In such cases, it can be more useful to
use different localization techniques, which may offer increased precision and robustness or
can work in areas without pre-installed infrastructure.

A typical visual relative localization system uses some kind of printed markers, which
are detected in an image and their shape and size is used to calculate relative position
of the markers. Numerous systems based on this method have been tested in experiments
[29, 30, 31]. An example of such system is [11], which uses black and white circular mark-
ers, and offers scalable 3D relative localization with up to centimeter precision. Flood-fill
segmentation and on-demand thresholding is utilized to detect the markers in the image,
and their relative location is then calculated from size, shape and position of each marker
in the image. A mathematical model of the method, allowing estimation of the localization
precision, is also presented in the paper. This system has been used in multiple robotic
experiments either to enable testing of different multi-robotic algorithms, or as a ground
truth [31, 32, 33]. A similar system is presented in [12], where four spherical markers are
used. The markers can be passive plastic spheres or active light-emitting spheres to improve
performance under worse light conditions. Standard image processing methods are applied
for detection of the markers in the image together with prediction of their position from
previous data for constraining the region of interest in the image and speeding up the de-
tection. The system achieves 6DOF tracking with centimeter precision, as is demonstrated
in the paper in experiments with an MAV and ground robots.
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1 INTRODUCTION

A slightly different approach, which takes advantage of ultra-violet (UV) light emit-
ters as active markers, is presented in [34]. A combination of filters and a UV-sensitive
camera sensor is used to detect the UV markers and filter out other light sources. This
approach is based on the assumption that UV light is less common in natural outdoor
environments than other light wavelengths (infra-red and visible). Multiple markers placed
on a single rigid body of a robot can be used to estimate its relative 3D pose, and blinking
markers at different frequencies enable their unique identification. As it is demonstrated
in experiments, the main source of error using this method is distance estimation, which
is a common problem of monocular vision-based localization methods. This problem has
been addressed in [35], where the authors use a combination of a vision sensor with a dis-
tance sensor. An infra-red (IR) camera measures bearing of the target by detecting an IR
emitter, placed on the target. An ultrasound transmitter-receiver pair measures distance
from the target using the Time of Arrival method. These measurements are fused by a
Kalman Filter to obtain a relative 3D position of the target with precision in the order of
centimeters, and maximal range of 9 m. Update rate of the system is 10 Hz for two robots,
but it is smaller for higher number of robots, because Time Division Multiplier Access is
used to multiplex the distance measurements.

All of the localization methods listed so far rely either on pre-installed infrastructure
or on detecting some kind of markers on the robots. The method presented in this paper
is able to localize robots without relying on either, using only information from a camera
image. This means that it can be used in scenarios where it cannot be expected that the
robot being localized will carry some kind of markers or cooperate in any other way. It
also removes the need for extra hardware carried by the robots, which may be important
for example in the case of MAVs, with limited carrying capacity. This is achieved by using
a convolutional neural network (CNN) to directly detect the robots in the camera images
instead of detecting some arbitrary markers. An example output of an object detection
CNN is in Figure 2.

There are multiple methods of detecting general objects in a camera image. In [36] the
authors introduced the Deformable Parts Models (DPM) method, which model an object
in the image as a set of parts with deformable relative spatial constraints. These parts are
detected using a dedicated classifier running in a window, which sequentially slides over the
image. The detected parts are then evaluated based on their relative spatial constraints to
determine class and position of the whole object. However, recently the DPM methods were
outperformed in speed and precision by methods based on Convolutional Neural Networks.
The R-CNN method [17] and its further improvements [18, 19] first generate class-agnostic
proposals of regions in the image where objects might be detected. The proposed regions
are then processed by a CNN to decide whether an object is present in each region and
to classify it. The latest iteration, the Faster R-CNN, is a state of the art object detector
regarding precision, but it is relatively slow when compared to other CNN-based methods,
such as YOLO [14] or SSD [21].
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1 INTRODUCTION

In this thesis, the object detection has to run in real-time with limited processing
resources onboard the MAVs. This is why a variation of the YOLO neural network structure
[14, 15] is used, which offers the best suitable compromise between precision and speed,
when compared to the other methods. The YOLO (first proposed in [14]) is an object
detection CNN, which performs the region proposal and classification in one pass over the
input image. It leads to a significant speed-up when compared to two-stage methods like
Faster R-CNN. An update to the original YOLO method is described in [15] with some
modifications to increase the detection precision and also proposing a method to improve
classification by training on a classification dataset in addition to a detection dataset.
During the course of work on this thesis, a third update to the YOLO CNN was released,
which is described in the technical report [16]. The authors present some new techniques of
detection and classification incorporated into the CNN structure as well as a new feature
extractor, and report an increase in precision when detecting small objects in comparison
to the older iterations of YOLO. This might be interesting for future work on the relative
localization methods, presented in this thesis, because in real-world conditions the MAVs
usually occupy a relatively small area of the whole image (see Figure 2).

Figure 2: Image from a real-world experiment with MAVs. Output of the object detection
convolutional neural network is overlaid in red.
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2 Neural network description

camera image

l1,2
l3,4

l5,6 l7,8
l9,10 l11,12 l13 l14 l15 l16

predicted detections

Figure 3: General principle of the neural network used in this work. Input of the neural
network is a camera image and output is a set of bounding boxes of detected MAVs with
their respective confidences.

In this section, the convolutional neural network, which is used for the MAV detection
from the camera image (see Figure 3), is described. The neural network outputs bounding
boxes of the MAVs, detected in the input image. A bounding box is the smallest rectangle
completely surrounding the part of the image containing the detected object. The bounding
boxes are used for the relative localization, as is described in section 3. Structure of the
neural network is based on the Tiny YOLO network [37, 14, 15], which was adapted to
classify one object class, and it is shown in Figure 6. Working principle of the network
is described in section 2.1. The network needs to be trained on labelled data in order
to produce good outputs, which is an essential part of utilizing a neural network. The
training process and the training dataset used for training the neural network in this work
are described in section 2.2. Two methods to increase the relative localization performance
by modifying the input data of the neural network have been designed, and are described
in section 2.3.

The neural network was implemented using the Darknet neural network framework [38]
and integrated with the Robot Operating System [39]. The implementation uses OpenCL,
which is an alternative to the commonly used Nvidia CUDA library. OpenCL was used
instead of CUDA, because it is supported by the onboard graphics chip of the used MAV
platform (Intel Iris Graphics 6100). However the onboard graphics chip of the MAVs is
not well suited for running a convolutional neural network in real-time, resulting in a low
number of frames per second (FPS), and a long delay between obtaining an image from
the camera and getting estimated bounding boxes of objects in the image. This negatively
affects the relative localization, as is discussed in section 5.2. There are different platforms,
which offer better performance for running neural networks, such as the Nvidia Jetson TX2
module [40]. The Jetson TX2 runs on a Pascal graphical processing unit (GPU), and is
relatively small and light-weight, enabling it to be used onboard MAVs.

The neural network, presented in this section, was tested to determine its speed per-
formance on different platforms. It was tested on the MAV onboard graphics chip, on the
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2 NEURAL NETWORK DESCRIPTION

Jetson TX2 GPU, and on a dedicated GPU (GeForce GTX 1080), which was also used
for training of the neural network. Note that the dedicated GPU is extremely large, heavy
and has high power consumption when compared to the other two, and it is not suitable
for computations onboard the MAVs. This GPU is included only as a reference. Results
of speed the tests are in Table 1. For comparison, benchmark results of running the neu-
ral network four times in parallel as well as results using the YOLOv2 neural network
structure are included. Running the neural network four times in parallel enables full 360◦

coverage of the area around the robot by using four cameras, rotated by 90◦ each, and
feeding image of each camera to a separate neural network, so it is an interesting case to
investigate. Using the YOLOv2 neural network might offer more robust detection, because
it is a deeper and thus potentially more precise, although slower, structure. It is also a
more commonly used neural network, so it is included for reference.

Setup Intel Iris Graphics 6100 Jetson TX2 GeForce GTX 1080
Tiny YOLO 250 ms 77 ms 7 ms
4x Tiny YOLO 1000 ms 167 ms 20 ms
YOLOv2 1000 ms 167 ms 13 ms

Table 1: Comparison of speed performance of different neural network setups. The network
presented in this thesis is listed as Tiny YOLO.

2.1 Detection principle of the neural network

The neural network used in this work is based on the Tiny YOLO neural network
structure [37, 14, 15] and consists of two basic elements: feature extractor and detector.
These two parts are described in detail further in this section. The Darknet neural networks
framework [38], which implements the algorithms, described in this section, was used to
implement and run the neural network.

Input of the neural network is an image from an onboard camera of the MAV and the
output is a set of detections (bounding boxes with their respective confidences). The input
image is represented as a tensor of floating point numbers in the interval [0; 1] with dimen-
sions equal to dimensions of the input layer of the neural network, which is 416× 416× 3.
If the image has a different resolution, it has to be resized. Each triplet in the input data
represents r, g and b (red, green and blue) values of one pixel in the image. The input
image is processed by the first 14 (out of the total 16, see Figure 6) layers of the neural
network to extract smaller resolution maps of high level features from the image. These
layers of the neural network are alternating convolutional layers with max-pooling layers,
and they form the feature extractor part of the network. The output of the 14-th layer
is an array of 1024 feature maps with 13 × 13 resolution, which is evaluated by the last
two layers to produce the predicted bounding boxes and their corresponding confidences.
A detailed description of the functioning of the layers in the neural network follows.
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2 NEURAL NETWORK DESCRIPTION

Figure 4: Example of learned features to be matched by the first layer of the neural network.

2.1.1 Convolutional layer

Input of a convolutional layer is an mw ×mh ×md tensor of real numbers, which is an
output from the previous layer (or an RGB image in case of the first layer). This tensor can
be interpreted as an array of md feature maps with dimensions mw ×mh. Feature map is
a two dimensional matrix of real numbers, representing matches with the learned features.
The unit, which finds the matches between feature maps and features is called a filter. It
performs linear convolution of an area in the input feature map and the learned feature,
and applies an activation function φ() to the result to obtain one value of the output map
(see equation 14). The area is then shifted in the input map by ks (stride) and the process
is repeated to obtain the next value of the output. The features, matched by these filters,
are learned during training by optimizing a set of parameters of the convolution to get
desirable outputs, using a process, which is described in section 2.2. An example of such
features is in Figure 4. The number of filters, size of the filter input area (kernel size),
the stride, and the activation function are hyperparameters of the layers, and are listed in
Figure 6 for the network used in this thesis. The Leaky ReLU function

φleaky(x) =

{
0.1x, if x < 0,

x, if x >= 0,
(1)

was used as an activation function in the neural network, which is a variation of a more
classical ReLU function

φReLU(x) =

{
0, if x < 0,

x, if x >= 0,
(2)

but it is more resistant to the “dying out” effect during the training process [41].

2.1.2 Max-pooling layer

Max-pooling layers are used to downsample the output feature maps of the convolu-
tional layers. One max-pooling operation is performed by taking the maximum value from
an area of the input map and outputting it as one value in the output map. The area is
then shifted by the stride and the operation is repeated to obtain the second value etc.
Max-pooling reduces the volume of information to be processed by the following layers,
while preserving important information about matching features, and also reduces sensi-
tivity of the network to small position perturbations of the features. Hyperparameters of
the max-pooling layers are the kernel size and stride, and they are listed in Figure 6.
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2.1.3 Detection layers

The detection part of the neural network consists of the last two layers (in our case
the 15-th and 16-th). The 15-th layer evaluates the output of the last feature extraction
layer to produce a 13 × 13 × 30 tensor, representing a map of 13 × 13 cells. Each cell
corresponds to one part of the input image and contains 5 predicted detections of the
objects in that part of the image with 6 coordinates (see Figure 5). The coordinates of a
detection are tx, ty, tw, th, to, tc, which are prediction parameters of bounding box x-offset
(tx), y-offset (ty), width (tw), height (th), confidence of the predicted bounding box (to)
and class probability (tc).

t1x t1y t1w t1h t1o t1c t2x t2y t2w t2h t2o t2c t3x t3y t3w t3h t3o t3c t4x t4y t4w t4h t4o t4c t5x t5y t5w t5h t5o t5c

30

13

13

Figure 5: Detail of the feature map between layers 15 and 16 (see Figure 3). One row of
the feature map contains prediction parameters for one cell of the 13×13 grid in the input
image.

A predicted bounding box has center coordinates
[
b̂x, b̂y

]T
, width b̂w, and height b̂h,

which are all relative to dimensions of the input image (e.g. b̂w = 1 means a bounding box

with a width equal to width of the image).
[
qx, qy

]T
are the top-left relative coordinates

of the cell, containing the bounding box prediction. Then the prediction parameters of a
detection in the cell correspond to

b̂x = σ (tx) + qx, (3)

b̂y = σ (ty) + qy, (4)

b̂w = pwe
tw , (5)

b̂h = phe
th , (6)

b̂c = σ (to) , (7)

where b̂c is confidence of the prediction, and parameters pw and ph are prior dimensions
of the bounding box, which are learned during the training process of the neural network.
σ () is the Logistic function:

σ (x) =
1

1 + e−x
. (8)
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In case that the neural network is designed to detect multiple classes, the parameter
tc would be a vector of numbers, representing confidence for the respective classes, which
would then be recalculated to a probability distribution using the Softmax function (refer
to [42] for more information about the Softmax function). The specific neural network
presented in this work detects only one class, and thus the parameter tc is redundant, as
the probability distribution is trivial (p(class|object) = 1).

The last (16-th) layer calculates the predicted bounding boxes from the output tensor
of the 15-th layer. Because there are 13×13 = 169 cells, each predicting 5 bounding boxes,
there is a total of 845 predictions, and most of them have very low confidence. To reduce
the number of predictions, the last layer filters the predictions based on their confidence
and a threshold pthresh. Confidence of a bounding box b can be interpreted as a predicted
probability that the bounding box is correct. If it is less than the threshold, the bounding
box is not considered further. Again, this is a simplified case because only one class is
considered in our case. In case of multiple classes, the bounding box confidence would
be multiplied by the its highest class probability, which would also determine the class,
assigned to the bounding box. Finally, the remaining bounding boxes are filtered again,
using the non-max suppression method, which is described in Algorithm 1, to remove
overlapping bounding boxes caused by detecting the same object multiple times (the non-
max suppression algorithm was introduced in [43]).

Algorithm 1 The non-max suppression algoritm
1: Input:

2: Bin . set of input bounding boxes and probabilities of detected MAVs
3: othresh . overlap threshold of the bounding boxes

4: Output:

5: Bout . set of filtered bounding boxes and probabilities of detected MAVs

6: Bout ← ∅
7: while Bin <> ∅ do
8: . find the highest scoring detected bounding box and add it to the output set
9: bbest ← find highest confidence (Bin)
10: Bout ← Bout ∪ bbest

11: . find all overlapping bounding boxes and remove them from Bin

12: for all b ∈ Bin do
13: if overlap (bbest, b) > othresh then
14: Bin ← Bin\b
15: end if
16: end for
17: . finally, remove bbest from Bin

18: Bin ← Bin\bbest

19: end while

10/54



2 NEURAL NETWORK DESCRIPTION

Input image 416x416x3

Feature map 416x416x16

Feature map 208x208x16

Feature map 208x208x32

Feature map 104x104x32

Feature map 104x104x64

Feature map 52x52x64

Feature map 52x52x128

Feature map 26x26x128

Feature map 26x26x256

Feature map 13x13x256

Feature map 13x13x512

Feature map 13x13x512

Feature map 13x13x1024

Feature map 13x13x1024

Predicted detections 13x13x30

Output bounding boxes and probabilities

Convolution, 3x3 kernel, 1 stride, 1 padding, leaky activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 3x3 kernel, 1 stride, 1 padding, leaky activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 3x3 kernel, 1 stride, 1 padding, leaky activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 3x3 kernel, 1 stride, 1 padding, leaky activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 3x3 kernel, 1 stride, 1 padding, leaky activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 3x3 kernel, 1 stride, 1 padding, leaky activation

Max-pooling, 2x2 kernel, 2 stride, no padding

Convolution, 3x3 kernel, 1 stride, 1 padding, leaky activation

Convolution, 3x3 kernel, 1 stride, 1 padding, leaky activation

Convolution, 1x1 kernel, 1 stride, 1 padding, linear activation

Detection layer

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

Layer 11

Layer 12

Layer 13

Layer 14

Layer 15

Layer 16

Figure 6: Detailed structure of the neural network used in this work (based on the Tiny
YOLO [37, 14, 15]). Sizes of the feature maps are in format width×height×depth (number
of output filters of the previous layer). The arrows represent layers of the neural network
which process the previous feature map and output a new one.
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2.2 Training

A vector of parameters of the neural network w has to be specified in order for the
neural network to work. These parameters are optimized so that the neural network gives
useful outputs. In context of neural networks, the optimization process is called training.

The training process utilizes the Stochastic Gradient Descent (SGD) method, which
is an iterative stochastic approximation of the Gradient Descent optimization method for
large datasets, and it is described in section 2.2.1. The SGD minimizes a loss function.
The loss function used in this work when training the neural network is specified in section
2.2.2. SGD requires the gradient of the loss function, which is calculated using backward
propagation of error (also called backpropagation), which is described in section 2.2.3.

The first 13 layers of the neural network were initialized with pretrained weights from
the Pascal VOC 2007 dataset [44], which were downloaded from https://pjreddie.com/

media/files/yolov2-tiny-voc.weights, so that the network did not have to learn ex-
traction of basic common features from scratch. This is a common technique to speed up
the training as only several last layers have to be significantly retrained [45, 14]. Since
SGD is a supervised learning method, it requires a labeled dataset. Such a dataset was
created specifically for this purpose, as it is described in section 2.2.4. During training,
weights were saved for each 1000 training iterations (batches) for later validation. To pick
the best weights for use in the experiments, a validation method, described in section 2.2.5
was used. The Darknet neural networks framework [38], which implements the algorithms,
described in this section, was used for training and validation. The parameters used during
training of the neural network, are listed in Table 2. They are explained in the following
sections.

2.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) works similarly as the standard Gradient Descent
algorithm, but uses mini-batches to approximate the gradient instead of using the whole
dataset for one weight update. This approach speeds up training on large datasets, which
are necessary when training deep convolutional neural networks. SGD iteratively finds an
approximate minimum of a loss function J (y, ŷ) by optimizing parameters w of a function
ŷ = f (x,w) over the training dataset. The dataset consists of a set of pairs (x,y), where x
is an input to the function f , and y is the corresponding desired output (ground truth). The
dataset is divided into nb batches of np input/output pairs each. In this specific use-case,
the inputs x are images, outputs y are manually labeled bounding boxes of the MAVs in
the image, the function f is the neural network, w are weights of the convolutional filters
in the network, and ŷ are the bounding boxes, estimated by the neural network.

The mini-batches are sequentially processed. Each image in a batch is propagated
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Parameter Explanation Value
nb number of mini-batches 40
np size of mini-batch 64

ntraining number of training images 2560
ntesting number of testing images 152
µ learning momentum 0.9
si learning rate steps 0, 102, 103, 104

ηi learning rates 10−3, 5 · 10−4, 10−4, 5 · 10−5

λobj weight parameter of the loss function 5
λnoobj weight parameter of the loss function 1

IoUthresh IoU threshold for evaluation of recall 0.5
nit training iterations of the used weights 5 · 104

rh image hue randomization 0.1
rs image saturation randomization 1.5
rv image lightness randomization 1.5
rc image crop randomization 0.2

Table 2: Parameters used for training of the neural network.

through the neural network (as it is described in section 2.1). Gradients of the loss func-
tion (which is defined in section 2.2.2) on the images from the batch are calculated using
backward error propagation (see section 2.2.3). Gradient of the loss function on the whole
batch Ri is defined as a sum of the gradients on the individual images:

∂Jbatch (Ri)

∂wi

=
∑

(x,y)∈Ri

∂J (y, f (x,wi))

∂wi

. (9)

Weight update ∆wi is calculated from ∂Jbatch(Ri)
∂wi

as

∆wi = µ∆wi−1 − ηi
∂Jbatch (Ri)

∂wi

, (10)

where ηi is learning rate at the i-th iteration, µ is momentum and ∆wi−1 is weight update in
the previous iteration (or zero if it is the first iteration). The learning rate ηi is a parameter
of the SGD algorithm, which sets the magnitude of weight update steps in each iteration,
determining the trade-off between speed and precision of training. The momentum µ serves
to reduce oscillations of the gradient by introducing what can be viewed as an analogy to
a physical momentum of wi [46]. Finally, the weight vector is updated as

wi+1 := wi +∆ wi. (11)

When all batches have been used, the dataset is randomly shuffled, and a new set of mini-
batches is chosen. Training is finished when a preset number of batches has been processed.
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A common way to improve the trade-off between speed and precision is to set the
learning rate high at the beginning and gradually decrease it during training [46, 13, 14, 15].
This helps speed up the initial convergence of the algorithm, but slow down as the SGD is
approaching the minimum to increase precision. One variant of this approach is to change
the learning rate in several steps, when a certain number of batches has been processed,
and this method was used when training the neural network in this thesis. Parameters
of the SGD algorithm described in this section, which were used during the training, are
listed in Table 2. Refer to [47, 48, 49] for more information about the SGD algorithm.

2.2.2 Loss function

Output of the loss function is a quantification of the difference between the output of
the neural network and the ground truth (desired output). Each input image of the neural
network is divided into a grid of S × S cells, and in each of these cells the neural network
predicts nB bounding boxes (for more details, see section 2.1). One predicted bounding
box b̂ per cell is picked so that it has the highest intersection over union ratio (IoU) with
the corresponding ground truth bounding box b. IoU of bounding boxes b̂ and b is defined
as

IoU
(

b, b̂
)

=
|b ∩ b̂|
|b ∪ b̂|

, (12)

where |b ∩ b̂| is size of intersection area of b and b̂, and |b ∪ b̂| is size of their union area.

B is a set of the ground truth bounding boxes and B̂ is a set of the estimated bounding
boxes. The loss function is then defined as

J
(

B, B̂
)

= λobj

S2∑
i=0

nB∑
j=0

1
obj
ij

[(
bx,i − b̂x,j

)2

+
(
by,i − b̂y,j

)2
]

+λobj

S2∑
i=0

nB∑
j=0

1
obj
ij

[(√
bw,i −

√
b̂w,j

)2

+

(√
bh,i −

√
b̂h,j

)2
]

+λobj

S2∑
i=0

nB∑
j=0

1
obj
ij

(
IoU

(
bi, b̂j

)
− b̂c,j

)2

+λnoobj

S2∑
i=0

nB∑
j=0

(
1− 1

obj
ij

)(
IoU

(
bi, b̂j

)
− b̂c,j

)2

, (13)

where bx,i, by,i, bw,i, bh,i are center coordinates (x and y) and dimensions (width and height)

of the i-th ground truth bounding box, b̂x,j, b̂y,j, b̂w,j, b̂h,j are the same parameters of the

j-th estimated bounding box, and b̂c,j is the confidence of the estimated bounding box.
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The variable 1
obj
ij is equal to one if an object appears in the i-th cell and if the j-th

predicted bounding box in the cell is “responsible” for detecting the object, otherwise it
is zero. One predicted bounding box is responsible for each ground truth. The responsible
bounding box is from the cell, in which lies the center of the ground truth bounding box,
and it is the one with the highest IoU with the ground truth. Parameters λobj and λnoobj
ensure that cells, which contain no ground truth object, are penalized less than cells that
do. This ensures stability of the training by preventing cells with no objects to “overpower”
gradient of cells containing an object [14].

This formulation of the loss function is simplified, compared to the original [14], since
it predicts only one class, so the part, penalizing wrong class prediction, was dropped from
the function.

2.2.3 Backward propagation of error

Backward propagation of error (or backpropagation) is a method of calculating the
gradient ∂J

∂w
of the loss function J for neural networks. The gradient is a vector of the same

length as the parameter vector w, and its elements can be interpreted as contributions of
the corresponding parameters from w to the total value of the loss function. First, an input
is propagated through the network to obtain an output, which is called a forward pass.
Then the output of the network is compared to the desired (ground truth) output and
the difference is expressed as a cost using the loss function (defined in previous section).
The cost is sequentially propagated from the last layer back to the first one to calculate
contributions of the parameters of the layers to the cost. This is the backward pass.

Three types of layers are used in the neural network in this thesis: convolutional, max-
pooling and the detection layer. During backpropagation the detection layer calculates the
error according to the loss function, defined in the previous section. It has no parameters to
learn, so it does not contribute to ∂J

∂w
. The max-pooling layers backpropagate the error by

assigning it to the filters of the previous layer, from which the output was taken during the
forward pass (which had the maximal activation, see section 2.1.2), and setting the error
of the rest of its inputs to zero. It also does not have any parameters, which are learned
(only hyperparameters), so it does not contribute to ∂J

∂w
. However, the convolutional layers

have weights wkj, which are learned parameters, and thus these layers need to be evaluated
using a more complex approach.

Output oj of a j-th convolutional filter in the neural network is defined as

oj = φj (sj) = φj

(
nk∑
k=1

wkjok

)
, (14)

where sj is the sum of inputs of this filter, nk is number of its inputs, ok is its k-th input,
φj is its activation function, and wkj is the weight of its k-th input. The element of the
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gradient vector ∂J
∂w
, corresponding to weight wkj is ∂J

∂wkj
, which can be expanded to

∂J

∂wkj

=
∂J

∂oj

∂oj
∂sj

∂sj
∂wkj

. (15)

The last partial derivative can be calculated as

∂oj
∂wkj

= ok, (16)

which is an output of a filter in the previous layer, and thus it is known during the training
process. The partial derivative

∂oj
∂sj

can be calculated if a derivation of the activation function

φj is known. In the network used in this thesis, only two types of activation function were
used: the Leaky ReLU and linear activation (see section 2.1). Their derivatives are

dφleaky (x)

dx
=

{
0.1, if x < 0,

1, if x >= 0,
(17)

dφlinear (x)

dx
= 1, (18)

so this part of the expanded ∂J
∂wkj

can be calculated by substituting sj for x, since sj is also

known. The most complicated part is evaluating ∂J
∂oj
. This partial derivative can be further

expanded by taking its total derivatives with respect to the output of all filters, which take
oj as their input, to obtain

∂J

∂oj
=

nl∑
l=1

(
∂J

∂sl

∂sl
∂oj

)
=

nl∑
l=1

(
∂J

∂ol

∂ol
∂sl

wjl

)
, (19)

where nl is the number of filters, which take oj as an input, sl is input of the l-th filter, which
takes oj as an input, ol is its output, and wjl is weight of oj in the l-th filter (similarly
as in (14)). In order to evaluate this expression, knowing ∂J

∂ol
is required, which can be

expanded in the same manner as ∂J
∂oj

, so it leads to a recursive problem. However, if ol

is in the output layer, then ∂J
∂ol

, can be directly calculated. This is why the gradient has

to be calculated backwards from the last layer to the first, so that the values of ∂J
∂ol

are

known when evaluating ∂J
∂oj

. Refer to [49] for detailed information about the backward error

propagation method.

2.2.4 Training dataset

Because training using the SGD algorithm is a supervised learning process, a training
dataset is required. In case of the neural network used in this work, the training dataset
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includes images containing the MAVs to be detected, and the corresponding ground truth
detections (bounding boxes). This dataset was obtained by capturing camera images from
an MAV, which was flying together with two other MAVs. The MAVs followed trajectories,
designed so that the onboard camera captured the two MAVs from different angles and
distances and on different backgrounds. Images from the camera were then manually labeled
by marking the ground truth bounding boxes to generate a set of 2560 training images. For
validation purposes, photos from other experiments with different exposures, backgrounds,
in varying weather conditions, and from different cameras, were hand-picked and manually
labeled as well to obtain a set of 152 testing images. Examples of images from the two
datasets are in Figure 7.

During training, the dataset is augmented by randomly cropping, flipping and distorting
the images to achieve higher variability in the data and thus get more general learned
parameters of the neural network, leading to more robust detection [50]. If imh, ims, iml

are the hue, saturation and lightness values of the image in the HSL color space, then these
values are distorted using parameters rh, rs, rv as

imh,r = imh + U (−rh, rh) , (20)

ims,r = U (1/rs, rs) ims, (21)

iml,r = U (1/rl, rl) iml, (22)

where imh,r, ims,r, iml,r are values of the distorted image and U (min,max) is a uniform
random distribution in the interval [min;max]. The image is cropped from top, left, right
and left by a random amount, drawn from the random distribution U (0, rc), where rc is a
parameter, relative to dimensions of the image. Then the image is flipped with probability
0.5. The parameters rh, rs, rl and rc used when training the network are listed in Table 2.

2.2.5 Validation of the trained network

The training algorithm does not have a strict stopping rule. It can theoretically run
indefinitely, but with the increasing number of iterations of the SGD algorithm, the risk
of overfitting increases. Overfitting occurs when the trained parameters give good results
on the training dataset, but low score on different data, and is caused by the parameters
being fitted to the training data too precisely and thus losing generality. To avoid this, the
training process has to be stopped before this situation happens, which can be determined
using a separate dataset. This separate dataset is called testing or validation dataset, and
it is used to evaluate performance of the trained parameters on data, which are not part of
the training dataset. During training, when score of the neural network using the current
parameters stops growing or starts decreasing on this testing dataset, the training begins
to overfit the training data.

During the training of the neural network, the weight vector was saved every 100
batches. The training algorithm was iterated for 105 batches, which was estimated to be

17/54



2 NEURAL NETWORK DESCRIPTION

Figure 7: Example images from the training and testing datasets. The top two images are
from the training dataset and the bottom two from the testing dataset.

enough for overfitting to occur. After 105 training batches, the training was stopped and
the saved weights were evaluated based on the recall and IoU scores on the training and
testing datasets (see Figure 8). Recall is defined as

recall =
nr

ngt

, (23)

where nr is the number of predicted bounding boxes having IoU with the corresponding
ground truth bounding boxes higher than a certain threshold IoUthresh, and ngt is the
total number of ground truth bounding boxes in the dataset. It can be interpreted as
the number of correctly detected bounding boxes relative to the ground truth number of
bounding boxes. Value of the parameter IoUthresh is listed in Table 2.

The final weight vector w, which was used for the neural network in the experiments,
was chosen from the saved weights based on the graph in Figure 8. It can be seen in
the graph that altough the average IoU score on the training data continues to rise with
the number of iterations of the algorithm (number of training batches used), the score on
testing data is almost constant at 53% after 4 · 104 iterations. Similarly, the recall score on
training data continues to rise, but on testing data it is almost constant at 60% after 4 ·104

iterations. This is why the weight vector after 5 · 104 iterations was chosen to be the value
of the final weights w as a compromise between score on the training and testing datasets
and the risk of overfitting.
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Figure 8: Graph of IoU and recall score of the neural network using weights, saved during
training.

2.3 Input modifications

In order to increase precision of the relative localization, two methods of modifying
the input data of the neural network have been used. The first method is aimed at bet-
ter bounding box estimation by running the neural network a second time on the same
input image, and is described in section 2.3.1. Target of the second method is to reduce
localization error due to image reshaping and large camera distortion in the corners. It is
described in section 2.3.2. The complete input modification method, combining the two, is
presented in Algorithm 2.

2.3.1 Zoom-in detection

Because the relative localization algorithm relies on the bounding boxes of the detected
MAVs (see section 3), its precision is limited by the ability of the neural network to precisely
estimate the bounding boxes. Making the bounding box estimation of the neural network
more precise is therefore desirable. The input layer of the neural network accepts a 416×416
RGB image, but the output of the onboard camera is 1280× 720 pixels. This means that
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the image from the camera has to be downsampled to less than 20% of pixels before it is
passed to the neural network, so some of the information contained in the original image
is lost (the image is resampled using linear interpolation [51]).

The zoom-in method remedies this by re-running the neural network on a zoomed area
with the same dimensions as the input of the neural network around each MAV detection.
Thus, the image of the MAV is presented to the neural network in the best resolution
available and without distortions caused by the downsampling. The advantage of this
approach is a better estimation of the bounding box, which was proved by simulation
tests (see section 4.1). Another advantage is a potentially decreased sensitivity to false
positives, since the false positive might not reappear in the second detection with the
zoomed-in image.

A disadvantage of this approach is a slower and not constant update rate of the relative
localization, since the neural network is run one more time for each detection, which is espe-
cially significant if there are more MAVs in the image or if there are a lot of false positives.
However in some specific cases, such as the experiments presented in section 5.2, where
there was only one MAV to be detected, this method provides significant improvements in
distance estimation, at the cost of halved update rate.

2.3.2 Subsquare detection

Along with the distortions, caused by downsampling the image (as was discussed in
the previous section), the image aspect ratio also has to be changed from 16 : 9 to 1 : 1.
This causes additional distortions of the objects in the image and possibly loss of precision
when detecting these objects. One possible way to address this issue would be to modify
structure of the neural network to natively accept the correct aspect ratio, but since the
neural network was also used on images from different sources with different resolutions
and aspect ratios, the default configuration was kept.

In case of the 2D leader-follower scenario (as described in section 5.2), the leader MAV
is expected to stay in the middle of the image with only small deviations, so the left and
right edges of the image are not as important as the center. Cutting these edges off from
the image, so that the resulting image is square, cancels the need to deform the image,
and also potentially removes false positives, since the leader MAV is unlikely to wander off
to the sides of the image under the conditions of the experiment, so a detection there is
likely to be a false positive. Thus, using only the center square of the image offers a good
compromise between increased detection and projection precision, and decreased field of
view. This method was used in the 2D leader-follower scenario.
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Algorithm 2 The detection algorithm with the input modifications
1: Input:

2: I . the input image from the camera stream
3: wcam, hcam . dimensions of the camera image
4: wcnn, hcnn . dimensions of the neural network input
5: w, pthresh . parameters of the NN - weights and confidence threshold
6: othresh . parameter of the NMS algorithm - overlap threshold
7: use subsquare . whether to use subsquare of the image
8: use zoom . whether to use the zoomed-in redetection method
9: Output:

10: Bout . set of bounding boxes of the detected MAVs

11: . this algorithm presumes that wcam ≥ hcam ≥ wcnn = hcnn
12: Bout ← ∅
13: wused ← wcam

14: hused ← hcam
15: if use subsquare then
16: wused ← hcam
17: . calculate offset of the sub-image so that it is centered
18: xoffset ← (wcam − wused) /2

19: . get a sub-image with dimensions wused × hused, and top-left corner
[
xoffset, 0

]T
20: I← get subrectangle (I, wused, hused, xoffset, 0)
21: end if
22: . reshape and downsample the image to correct input dimensions of the neural network
23: Itmp ← resize (I, wcnn, hcnn)
24: . run the neural network to get detected bounding boxes
25: Bdet ← detect (Itmp,w, pthresh)
26: . filter the bounding boxes using the non-max suppression algorithm
27: Bdet ← nonmax suppression (Bdet, othresh)
28: if use zoom then
29: for all b ∈ Bdet do
30: xcenter, ycenter ← get center (b)
31: . find top-left corner of the zoomed area, bounded to the image dimensions
32: xleft ← min (max (0, xcenter − wcnn) , wused − 1− wcnn)
33: ytop ← min (max (0, ycenter − hcnn) , hused − 1− hcnn)
34: Itmp ← get subrectangle (I, wcnn, hcnn, xleft, ytop)
35: Btmp ← detect (Itmp,w, pthresh)
36: . keep the bounding box with highest confidence, if there were multiple redetected
37: b← find highest confidence (Btmp)
38: Bout ← Bout ∪ b
39: end for
40: else
41: Bout ← Bdet

42: end if
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3 Relative localization

In this section the relative localization method is presented. The method relies on the
output of the neural network, which is a set of predicted bounding boxes of the detected
MAVs and their respective confidences (for more details see Section 2). Direction vector of
each detected MAV is calculated from the output of the neural network using the method
described in section 3.2. Distance of each MAV is estimated based on the output of the
neural network using the method described in section 3.3, and filtered using a sliding
window filter, which averages the last nf values to filter out outliers. An estimate of relative
positions of the detected MAVs is obtained by combining the calculated directions and
distances. The complete algorithm is presented in Algorithm 3. Assumptions about the
system setup are discussed in section 3.1.

3.1 System setup

In the experiments, one MAV with an onboard camera and an onboard computer,
capable of running the neural network in real-time, is presumed. Calibration parameters
of the camera need to be known for the relative localization. One or more MAVs, located
in the field of view of the onboard camera, are being localized. The MAVs are presumed
to be visually similar in the sense that the neural network can learn a good generalization
of them from the available training datasets. Finally, the neural network itself, properly
trained to detect the MAVs on a good dataset, is required for the presented algorithm.

3.2 Direction estimation

Estimation of a direction vector to a detected MAV from a predicted bounding box of
the MAV is described in this section. The center point of the predicted bounding box is
first rectified using the camera distortion coefficients, obtained from calibration (the camera
calibration and image rectification was done using the OpenCV library [52], which uses an

algorithm, based on [53]). The rectified pixel coordinates
[
u, v

]T
are then transformed to

the XY plane in the camera projection coordinate system using a pinhole camera model
(see Fig. 9 and reference [54]) as xy

z

 =

(u− cx)/fx
(v − cy)/fy

1.0

 , (24)

where cx, cy, fx, and fy are parameters of the camera calibration.
[
cx, cy

]T
represent coor-

dinates of the optical center of the camera in pixels. The constants fx, fy are x and y focal
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Figure 9: The pinhole camera model. The camera coordinate system is defined by its
axis vectors Xc,Yc,Zc, and origin Fc. The camera projection coordinate system lies in
a plane, defined by z = f (where f is the camera focal length), and is translated by the

vector
[
cx, cy

]T
so that the origin of this coordinate system is in the top-left corner of

the camera image. P is the point being projected onto the camera projection plane and[
u, v

]T
are coordinates of its projection (after rectification). Image source: [51].

lengths in pixels. They correspond to the camera physical focal length f (in millimeters)
by the relationship

fx = sxf, (25)

fy = syf, (26)

where sx and sy are pixel width and pixel height in pixels per millimeters.

The resulting point
[
x, y, z

]T
is then normalized to obtain a directional vector a of

the 3D line on which the original pixel
[
u, v

]T
lies. The units of the elements of the vector

a are meters. Origin of the line is the point
[
0, 0, 0

]T
, which is the origin of the camera

coordinate system.
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3.3 Distance estimation

Distance estimation of a detected MAV from the camera is based on the assumption
that the 3D bounding geometrical primitive of an MAV is a sphere. This assumption is
important to simplify the problem in situations when the detected MAV is tilted or viewed
from below or above, although it introduces some error in these situations. A more precise
assumption would be to assume a cylindrical 3D bounding primitive. However this would
extremely complicate the problem as it would require a much more sophisticated model
which would take into account relative position of the detecting and detected MAVs as well
as tilt of the detected MAV, which would have to be estimated. Because the model described
in this section, which is based on the simpler assumption of a spherical bounding primitive,
proved to be precise and reliable enough in simulations and in real-world experiments, the
more complex model was not pursued.

The point
[
u, v

]T
is the rectified center point of the bounding box of the detected

MAV, as estimated by the neural network. wbb is width of the bounding box. Vectors al

and ar are directional vectors of 3D lines, projected through points
[
u− wbb/2, v

]T
and[

u+ wbb/2, v
]T

, respectively (see previous section 3.2 for description of the projection
method and Fig. 10 for an overview of the situation). These lines intersect the point Fc

(origin of the camera coordinate system), and they are presumed to be tangent to the MAV
bounding sphere SMAV.

r

C

SMAV

ar

al
Xc

Yc

Zc

Fc

[u, v]T

wbb

PXY

Figure 10: Perspective view of the geometrical situation of the MAV projection. SMAV is
the bounding sphere of the MAV with center C and radius r. PXY is the camera projection
plane, Fc is the origin of the camera coordinate system and Xc,Yc,Zc are its axis vectors.[
u, v

]T
is the MAV center, projected to PXY , and wbb is its width. Vectors ar and al are

direction vectors of lines, intersecting centers of the sides of the detected MAV bounding
box.
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The distance l from the origin of the camera coordinate system Fc to the center of the
MAV C is estimated from angle α which is half of the angle between the vectors a1 and a2

(see Fig. 11). The angle is calculated as

α =
acos

(
a1·a2

||a1||||a2||

)
2

. (27)

The formula to calculate the distance is derived using variables, displayed in Fig. 11. The
relation

tan (α) =
d

l1
(28)

can be derived from the right-angled triangle 4FcAPr. Similarly, the relations

tan (β) =
d

l2
(29)

and

sin (β) =
d

r
(30)

can be derived from the right-angled triangle 4CAPr. Using the right-angled triangle
4FcCPr, the relation between the angles α and β is determined to be

β =
π

2
− α. (31)

Using the identity l = l1 + l2 and the equations (28), (29), (30), (31) the final relation
between l and α can be found:

l = r sin
(π

2
− α

)
[tan (α) + cotan (α)] . (32)

During the experiments, described in section 5, a radius r = 0.29 m was used to de-
scribe the bounding sphere of the MAVs. However, due to an overlook, a simplified version
of the equation (32) was used, which doesn’t take into account the difference between
the sphere diameter (2r) and length of the line segment PrPl, which is actually being
projected (||PrPl|| = 2d). The simplified equation is

l =
r

tan (α)
. (33)

The difference between 2r and 2d is only significant in very short distances. The distance
error due to this mistake is less than 2% for distances larger than 3 m (see Fig. 12), which
was the minimal distance between the MAVs before the collision avoidance system was
activated during the experiments, so the error did not influence the results drastically.
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l

Figure 11: Top view of the geometrical situation of the MAV projection. SMAV is the
bounding sphere of the MAV with center C and radius r. PXY is the camera projection
plane and Fc is the origin of the camera coordinate system. Vectors ar and al are direction
vectors of the lines, intersecting the centers of the sides of the detected MAV bounding
box (see Fig. 10).
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Figure 12: Error in distance estimation when using the simplified equation (32) over the
full equation (33).
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Algorithm 3 The relative localization algorithm
1: Input:

2: B . set of bounding boxes of detected MAVs
3: camera calibration . calibration parameters of the camera
4: Tw

c . transformation from camera to world coordinate system
5: nf . order of the sliding window distance filter

6: Output:

7: M . set of estimated positions of detected MAVs

8: M← ∅
9: filter← initialize filter (nf )
10: for all b ∈ B do
11: . estimate distance of the MAV as described in section 3.3
12: l← estimate distance (b, camera calibration)
13: . filter the distance using a sliding window averaging filter
14: lf ← sliding window filter (l, filter)
15: if distance valid (lf ) then
16: . get the projection unit vector as described in section 3.2
17: a← project line (b, camera calibration)
18: . multiply the unit vector by the distance to get the point
19: xc ← lf · a
20: . transform the point from camera to world coordinate system
21: xw ← transform (xc,T

w
c )

22: . add the point to the set of estimated MAV positions
23: M← M ∪ xw

24: end if
25: end for
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4 Evaluation of presented methods

The system was studied in realistic simulations using the Gazebo simulator4 to deter-
mine whether it is feasible to use the neural network for relative localization. Parameters
for the relative localization method, described in the previous sections, have been chosen
based on these simulations. From the simulations, two leader-follower scenarios have been
designed to be tested in a real-world experiment.

The simulation set-ups are described in section 4.1. In section 4.2 is described fine-
tuning of the methods on datasets from previous real-world experiments, with focus on
the distance estimation, to ensure robustness of the system under real conditions. After
proving that the system is working robustly in simulations as well as on the datasets, it
was tested in several real-world experiments, where an MAV was controlled based on the
relative localization system.

4.1 Simulations

To confirm the hypothesis that the zoom-in redetection method, described in section
2.3.1, improves estimation of the bounding box, a simulated experiment was designed. In

this experiment, one MAV was holding position at coordinates
[
0, 0, 5

]T
of the global

coordinate system. Another MAV with a simulated camera sensor, pointing in the direction
of the stationary MAV, was running the CNN detector (described in section 2) on images
from the simulated camera, and logging the detected bounding boxes. After 100 measure-
ments have been logged at a certain position, the camera MAV changed its distance from
the stationary MAV by 0.25 m. This was repeated from a starting mutual distance 0.5 m to
the maximal distance at which the stationary MAV was detected by the neural network,
which was around 13.75 m.

The experiment was done with a standard single detection per image, and with the
zoom-in redetection method. Both methods were then compared to the ground truth
bounding box for each distance. The ground truth was obtained by projecting the edges of
the stationary MAV using known calibration parameters of the simulated camera, similarly
as in section 3.2. Because the width of the bounding box is used for the relative localization
(see section 3.3), it was used as a comparison metric.

The zoom-in redetection (or double detection) method proved to provide more accurate
estimates of bounding box width, as was expected. Average absolute difference between
the ground truth and single detection bounding box widths (which are relative to width of
the camera image) was 0.026, whereas for the double detection it was 0.007, which is a 73%
error decrease. A comparison between the two methods and the ground truth bounding box

4http://gazebosim.org/
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width over distance is in Figure 13, where the difference can clearly be seen. The bounding
box height estimation was unsurprisingly also improved from an average absolute error of
0.012 to 0.007, which is a 42% error decrease, although this is irrelevant for the purposes
of relative localization in this work.
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Figure 13: Comparison of bounding box width over distance for simple and double detec-
tion.

4.2 Dataset experiments

To determine usability of the proposed methods on real-world data, experiments on
a dataset from real-world experiments have been concluded. The dataset was collected
during an unrelated experiment using the same experimental MAV platform, as was later
used for real-world experiments in this thesis (see section 5 for a description of the platform
and the real-world experiments). It consists of video data from an onboard camera and
corresponding ground truth positions of the MAV, carrying the camera, as well as of
another MAV, which appears in most of the images in the video. The dataset was used for
evaluating the vision-based relative localization, presented in this thesis. The ground truth
positions were acquired using the same RTK-GPS system, as is described in section 5.

The relative localization method was applied to the dataset to generate estimates of
the relative position of the MAV in the image. Similarly as in the simulations, described in
the previous section, both the single detection and zoom-in redetection methods have been
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Detection method Average absolute error Maximal absolute error
Single detection 1.59 m 19.77 m
Zoom-in redetection 1.49 m 11.18 m
Zoom-in redetection, filtered 1.43 m 11.19 m

Table 3: Results of dataset experiments using different methods.

used in order to compare them. Because errors in distance estimation were expected to be
the bottleneck of the relative localization (as was confirmed in the real-world experiments,
see section 5), focus was put on fine-tuning the distance estimation method. Outliers in
the distance estimation can lead to unstable and potentially dangerous behavior in case
that position of the MAVs is controlled based on the relative localization, as it is in the
leader-follower experiments presented in section 5.2. It is presumed that in that case the
MAVs would move relatively slowly, unlike in the dataset used in this section, where the
MAVs were moving fast (indicated by the sharp changes in relative distance of the MAVs
in Figure 14). Because of this a sliding window filter, which takes an average of the last
nf values, was applied to the estimated distance to suppress the outliers. Length of the
sliding window was empirically chosen as nf = 5.

Graph of the estimated distances during the course of the experiment is in Figure 14.
Graph of the estimated distances with respect to the ground truth distance is in Figure 15.
The average absolute error as well as the maximal absolute error in the distance estimation
during the whole experiment is in Table 3. It can be seen that the double detection improves
precision significantly, and also suppresses outliers, although some outliers still remain. The
filtering does not have such a large positive effect. Although some outliers are removed,
new ones are introduced due to fast changes in the MAV distance and slower response
of the filter when compared to the unfiltered estimation (see the graph in Figure 14 at
times 280 s, 395 s, etc.). However since it is assumed that in case the maximal speed of the
MAVs is limited when they are controlled based on the relative localization, the negative
effects of the filter will be mitigated. This is why the filtering was used in the real-world
experiments.
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Figure 14: Comparison of estimated relative distance of the MAVs over time using the
different methods.
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Figure 15: Comparison of estimated relative distance of the MAVs with respect to ground
truth distance using the different methods.
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5 Real-world experiments

Two sets of real-world experiments were conducted to test precision and robustness of
the system under real conditions. First, the ability of the system to detect an MAV was suc-
cessfully tested in a one-dimensional leader-follower scenario. This experiment is described
in section 5.1. After the first experiment demonstrated reliability of the system in the sim-
plified scenario, the second set of experiments was conducted. In the second experiment
the leader-follower formation moved in two dimensions in the XY plane of the global co-
ordinate system. Target of the second scenario was to test the relative position estimation
method (described in section 3), which was successful, as is described in section 5.2.

An MAV platform (see Figure 1), developed by the Multi-robot Systems Group from the
Faculty of Electrical Engineering, Czech Technical University in Prague, for the MBZIRC
competition5, was used to carry out all the experiments. It is a hexacopter MAV with an
onboard computer, capable of running the neural network in real-time. The hexacopter is
stabilized using the Pixhawk Px4 flight controller [55], and controlled using a Model Predic-
tive Controller (MPC). It carries an RTK-GPS sensor (model Tersus Precis-BX305), which
provides 1 cm horizontal localization precision under good conditions [56]. This sensor was
used as a ground truth for the horizontal position of the MAVs during the experiments. The
vertical position (height) of the MAVs was obtained using fusion of two downward-pointing
distance sensors, namely Garmin Lidar Lite v3 with a typical accuracy of ±0.1 m [57], and
Teraranger One with a typical accuracy of ±0.02 m [58]. If an MAV had the role of a fol-
lower in an experiment, it was equipped with a Mobius ActionCam camera This camera
was capturing images with 1280 × 720 pixel resolution at 30 Hz, which served as inputs
of the neural network. For a detailed description of hardware of the MAV platform, see
[22, 23, 24], and for description of the algorithms, used for controlling the MAV platform,
see [25, 26].

During all experiments, a collision avoidance system for the MAVs was used for security
reasons with an activation radius rcollision = 3 m. If two MAVs approached each other closer
than rcollision, the collision system was activated and the MAV with a lower (predefined)
priority evaded the other one by flying into a higher altitude. Ground truth positions of
the MAVs, based on the RTK-GPS sensor, were shared for needs of the collision system,
but they were not used in any other way. The collision avoidance system is described in
detail in [3].

5.1 One-dimensional leader-follower scenario

One experiment using this scenario was conducted with the aim to demonstrate that
the implemented neural network system is capable of detecting the leading MAV reliably

5http://www.mbzirc.com
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and in real-time under real-world conditions. A follower MAV was following a leader MAV
along one axis based on outputs of the neural network, while the other two coordinates were
constant. Distance between the MAVs was neglected for this experiment and it was not
estimated. Specific setup of this experiment is described in section 5.1.1, and the results
are discussed in 5.1.2. A video from the experiment is available at https://youtu.be/

RK3kTX56yFo and at the attached CD.

5.1.1 Setup of the experiments

The leader MAV was flying randomly along the X-axis of the global coordinate system
(which is given by the onboard RTK-GPS sensor) in an interval [−20 m; 20 m] with a
maximal speed 0.5 m s−1 (see Fig. 16). The Y position of the leader was set to 8 m and
its height to 5 m. The follower MAV carried a camera, pointed in the direction of the Y
axis, providing images for the neural network, which was detecting the leader MAV. The
Y position of the follower was set to 0 and the height to 5 m. Its speed along the X axis
was controlled based on a horizontal deviation of center of the detected MAV bounding
box from center of the image. This deviation was an input to a PID controller, which was
stabilizing it at zero by setting the speed setpoint for the MPC controller of the follower
MAV in the X coordinate of the global coordinate system.

The PID controller is formulated as

e [k] = u [k]− 0.5, (34)

eD [k] = ∆t [k] (e [k]− e [k − 1]) , (35)

eI [k] = max (min (eI [k − 1] + ∆t [k] e [k] , eI,max) ,−eI,max) , (36)

vx [k] = KP e [k] +KIeI [k] +KDeD [k] , (37)

where u [k] is the horizontal coordinate of the center of the bounding box at time step k
(relative to width of the camera image), ∆t [k] is the time, elapsed from the last update of
the controller, at time step k (in seconds), and vx [k] is a setpoint for the MAV speed in
the direction of the X-axis at time step k (in meters per second). The integrated deviation
eI [k] is bounded to the interval [−eI,max; eI,max].

Parameters of the controller were tuned in simulations before the experiment and their
values were

KP = 26,

KI = 2,

KD = 2,

eI,max = 0.1.

Detection parameters of the neural network and the non-max suppression algorithm (for
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to -20m to +20m

8m

Xg

Yg

Zg
1

follower MAV

vx

2

leader MAV

Figure 16: Setup of the one-dimensional leader-follower experiment. Axes of the global
coordinate system are marked with the red, green and blue vectors Xg,Yg,Zg. vx is speed
of the follower MAV in the direction along the X-axis.

their description, see section 2.1) were

pthresh = 0.2,

othresh = 0.2,

and weights w of the neural network, which were trained as described in section 2.2. Neither
the zoom-in nor subsquare detection methods, described in sections 2.3.1 and 2.3.2, were
used in this experiment, since precise relative localization was not necessary in this setup
as the follower MAV was only controlled based on the horizontal position of the detected
bounding box in the image.

A single detection during an update was used directly as an input of the PID controller.
In case that there were multiple detections in one image (which was possible due to false
positives), the one with the closest coordinates (based on a euclidean distance metric) to
the previously used bounding box was employed for controlling the MAV speed. If there
was no previously used bounding box (i.e. at the beginning of the algorithm), no control
update was done until there was an image with only one detection.
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(a) Top view at time t = 150s (b) Top view at time t = 160s

(c) Detections at time t = 150s (d) Detections at time t = 160s

Figure 17: Photos from the end of the 1D leader-follower experiment. Top view of the
experiment is in Figures 17a and 17b. Images from the onboard camera of the follower
MAV with highlighted detections are in Figures 17c and 17d.
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Figure 18: Error of the follower X coordinate during the one dimensional leader-follower
experiment.

5.1.2 Results

The experiment lasted for 180 s, until the follower lost visual contact with the leader.
This was due to a few frames where the leader MAV was not detected by the neural network
and instead one false positive in the background was detected (see Figure 18). In the next
frame the follower started following the false positive while ignoring the leader because of
the rule how to deal with multiple detections, used during this experiment (described in
the previous section). As a result, the leader eventually flew out of the camera frame and
the follower got lost. For the next experiments, the strategy of dealing with unexpected
multiple detections was changed to always using the bounding box with highest confidence,
and this problem was not repeated (see section 5.2).

The average absolute error of the follower (difference between X coordinates of the
leader and follower) was 1.12 m, and the maximal absolute error before the follower lost
contact was 4.34 m. The error is caused mainly by lag of the camera (0.13 s) and the neural
network (0.27 s) and by a control lag of the PID controller itself. A graph of the error
over time during the experiment is in Figure 18. The spikes in the error around the 100 s
mark were caused by false positives. Oscillations of the error are caused partially by a too
aggressive PID tuning, and also by tilting of the follower MAV when it is changing position,
which shifts the detection in the image, causing a small instability in the system.
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Although the experiment ended with the follower eventually losing the leader MAV, the
results are deemed satisfactory for proving reliability of using the neural network for MAV
detection in a real-world experiment. With a more robust and more sophisticated approach,
such as using a Kalman filter to estimate the X coordinate and speed of the leader, a better
result could be achieved, but that was not the aim of this thesis. This experiment proved
that the used neural network structure and weights are reliable and focus was put on the
experiments, described in the next section, which used the full relative localization method.

5.2 Two-dimensional leader-follower scenario

Similarly as in the previous scenario, a follower MAV was following a leader MAV in
a static formation, but this time in two dimensions, and using the relative localization
method, described in section 3. The experiment was repeated three times with the same
setup. Setup of the experiments is described in the next section. Results are discussed in sec-
tion 5.2.2. A video from the experiments is available at https://youtu.be/8nvaTJoOrIg

and at the attached CD.

5.2.1 Setup of the experiments

The leader MAV flew through a predefined trajectory with a constant speed vleader =
0.5 m s−1 and a constant height zleader = 11 m (see Fig. 19). The 2D position of the leader
was estimated from its detected bounding box using the Algorithm 3 (as described in section
3) and the follower MAV was keeping a static formation in relation with this position (a
constant offset of 6 m in the Y-axis).

The Z coordinate of the leader in the global coordinate system was not estimated,
and the follower was flying in a constant height above ground, although it would require
minimal modification of the algorithm to follow the leader MAV in the Z coordinate as well.
This was due to safety reasons, so that the follower MAV would not try to descend into the
ground or fly to extreme heights in case of a persistent false positive, because the relative
localization algorithm was not tested in a real-world experiment beforehand. A true 3D
leader-follower scenario was not tested after this experiment due to limited availability of
the experimental platforms, but will be a part of future work.

Parameters of the neural network and the non-max suppression algorithm (for their
description, see section 2.1) were

pthresh = 0.2,

othresh = 0.2,

and weights w of the neural network, which were trained as described in section 2.2. The
zoom-in and subsquare detection methods, described in sections 2.3.1 and 2.3.2, were both
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6m

Xg

Yg

Zg
follower MAV

leader MAV

Figure 19: Setup of the two-dimensional leader-follower experiment. The global coordinate
system axes are marked with the red, green and blue vectors Xg,Yg,Zg. The trajectory
setpoint of the leader MAV is marked with blue lines. Ideal trajectory of the follower MAV
in case of perfect following is marked with green lines. Grid size is one meter.
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used during this experiment to make the relative localization more reliable and precise. If
there were multiple detected MAVs in an image (due to false positives), the one with the
highest confidence (estimated probability) was used.

Trajectory of the leader was designed to test the relative localization method under
different circumstances. Namely, the following interesting sections of the trajectory have
been included:

• the leader is moving parallel to the X axis of the camera coordinate system (horizon-
tally in the image, see section 3.2),

• the leader is moving in the positive direction of the Z axis of the camera c.s. (in the
direction in which the camera is pointing),

• the leader is stationary for a short moment,

• the leader is moving in the X and Z axis of the camera c.s. at the same time,

• the leader is moving in the negative direction of the Z axis of the camera c.s.

These have been put together into a single trajectory so that the parts where the relative
localization was expected to fail with highest probability (due to losing visual contact or
due to collision avoidance) are at the end. The final trajectory is displayed in Figure 19.
This trajectory has been used in the first two experiments. A modified, shorter version of
this trajectory has been used in the third experiment.

5.2.2 Results

In all three experiments, the follower successfully followed the leader in the preset
formation during most parts of the trajectory. The first two experiments ended in the last
part of the trajectory, where the leader is moving in the negative direction of the camera
coordinate system (towards the follower), which proved to be the most tricky movement,
as was expected. The follower lost visual contact with the leader when the two MAVs got
too close to each other and the collision avoidance was activated. The collision avoidance
sent the follower to a height of 15 m above ground, which made the leader (which stayed at
11 m height) go out of the camera image (see Fig. 20). This was because of the inaccuracy
of the relative localization added up with the lag, caused by the camera (0.13 s) and the
neural network (0.56 s in case of one detection), together with the non-zero reaction time of
the follower MAV to a change of a position setpoint. In the third experiment the formation
was kept through the whole shorter trajectory, which demonstrates that the follower can
follow the leader without losing visual contact if the trajectory is suitable.
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follower MAV

leader MAV

(a) Top view at time t = 10s

follower MAV

leader MAV

(b) Top view at time t = 140s

(c) Detections at time t = 10s (d) Detections at time t = 140s

Figure 20: Photos from the first 2D leader-follower experiment. A top view of the exper-
iment is in Figures 20a and 20b. The trajectory setpoint of the leader MAV is marked
with blue lines, and the ideal trajectory of the follower MAV in case of perfect following
is marked with green lines. Images from the onboard camera of the follower MAV with
highlighted detections (in red) are in Figures 20c and 20d. Figures 20b, 20d are from the
end of the first experiment, when the collision avoidance was just activated.
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Experiment Duration Avg. RMS error Max. RMS error
1 140 s 3.88 m 5.66 m
2 165 s 2.02 m 3.96 m
3 85 s 2.80 m 6.53 m

Experiment Avg. X error Avg. Y error Avg. Z error
1 1.90 m 2.61 m 1.14 m
2 1.06 m 1.24 m 0.74 m
3 1.11 m 2.22 m 0.96 m

Table 4: Details about the three 2D leader-follower experiments.

Average and maximal RMS errors of the relative localization (difference between the
predicted and ground truth position of the leader), average absolute errors in separate X,
Y and Z coordinates, as well as durations of the experiments are listed in Table 4. Ground
truth trajectories of the MAVs, estimated trajectory of the leader based on the relative
localization, and RMS errors during the experiments are shown in Figure 21.

From the graph of the RMS errors it can be seen that the largest errors correlate with the
leader moving in the direction towards or away from the follower. It can be concluded from
this correlation that the relative localization method is better at estimating the direction
of the detected MAV than its distance In this specific setup this translates to a better
estimation of the X and Z coordinates of the leader than its Y coordinate (in the global
coordinate system). This is supported by values of the errors in separate coordinates (see
Table 4 and Figure 22), where the error in the Y coordinate is consistently larger than in
the X or Z coordinate.

Another source of error during the localization is the time lag between taking an image
and getting a new position estimation, because the MAV may have moved since the image
was taken. The total lag of the system, caused by the camera and the neural network, was
approximately 0.7 s, and since the leader was moving at a maximal speed of 0.5 m s−1, the
maximal RMS error, caused by the lag, is approximately 0.35 m.

The relative localization system estimated the Z coordinate of the leader with a more
or less constant error of −1 m (see Figure 22). This was partially caused by an error in
the transformation from the camera coordinate system to the global coordinate system.
The camera is offset in the Z coordinate by 0.24 m relatively to the MAV position, but
the translation part of the transformation had the opposite sign of the corresponding
element due to an oversight. Thus the camera coordinate system was shifted in the opposite
direction, causing a error of −0.48 m in the Z coordinate of the global coordinate system.

The remaining part of the Z coordinate error may be caused by a combination of
effects: tilt of the camera, because of imperfect mounting, and slope of the field, where the
experiments have been conducted. The camera correctly with care, but a mounting error
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of one degree is hard to avoid with the used rudimentary mounting system. One degree
mounting error leads to 0.1 m localization error at 6 m distance to the target. Slope of the
ground can cause an error in a similar fashion, because ground truth height of an MAV (the
Z coordinate of their position) is determined as its distance to ground, which is measured
by two distance sensors. Therefore the ground truth relative height might be different than
the actual relative height of the MAVs during the experiments. Both of these errors are
proportional to distance between the MAVs, and since the MAVs were keeping the distance
approximately the same throughout the experiments, these two causes might explain the
almost constant error in the Z coordinate.

5.3 Experiments summary

Viability of the presented relative localization method was demonstrated in the real-
world experiments with an average RMS localization error 2.86 m and maximal RMS error
6.53 m. The experiments show that the relative localization performs well for suitable
trajectories, although the error may increase if the MAVs being localized are moving away
or towards the camera. This is because estimation of the mutual distance is less reliable
than estimation of the horizontal and vertical position of the localized object in the camera
image.

Several sources, contributing to the total error, have been identified, including two
systematic errors, which are trivial to correct in future utilization of this method. Namely,
the systematic errors are using the wrong distance estimation equation (33) instead of (32),
and using a wrong transformation between the MAV and camera coordinate systems, and
correcting them can improve the localization error by up to 0.5 m.

Precision of the relative localization can also be improved by reducing lag of the neural
network output and by using an estimator (e.g. a Kalman filter) to predict position of the
localized MAV. Both these solutions are theoretically and technically viable and will be
addressed in future work. Reducing the total lag of the localization (by speeding up the
estimation or by using prediction) is especially important if the MAVs are moving fast,
because the localization error caused by the lag is proportional to speed of the localized
object. In case of the experiments, presented in the previous sections, where the leader
MAV was moving at 0.5 m s−1, the error could be reduced by up to 0.35 m by eliminating
the lag.
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Figure 21: Results of position estimation of the leader MAV in the three 2D leader-follower
experiments. A top view (in the global coordinate system) of the experiments is presented
in Figures 21a, 21b and 21c. The blue dots represent ground truth positions of the leader
MAV, red crosses its estimated positions, and green dots represent positions of the follower
MAV. The last Figure 21d is a graph of the position estimation error over time during
the three experiments. The first gray vertical line represents time at which the leader
MAV changed its heading away from the follower, the second when it started following the
inclined part of the trajectory, and the third when it started the last part of the trajectory,
heading towards the follower.
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Figure 22: Estimation errors in separate coordinates during the 2D leader-follower experi-
ment. The coordinates are in the global coordinate system.
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6 Conclusion and future work

A vision-based relative localization method for robots was presented in this thesis. It
utilizes a convolutional neural network to detect the objects to be localized in a camera
image. The main advantages of this approach are that it requires no extra onboard hardware
except for the camera, and it works without any markers, unlike most of the other state
of the art visual localization methods. No need for extra hardware, such as specialized
distance sensors or wireless communication equipment, is especially important when the
system is used for relative localization on flying vehicles, because of their limited carrying
capability. Since the proposed relative localization system does not require any markers
placed on the robots being localized, it can be used also in situations where the localized
robots cannot be expected to carry markers, such as in search and destroy missions or in
other non-cooperative scenarios.

The proposed method was evaluated in simulations and on datasets from previous ex-
periments, as it is described in section 4.1. The simulations confirmed that using zoom-in
redetection, which is introduced in section 2.3, reduces average error of bounding box di-
mensions of the detected objects, enabling better relative localization, and thus it was used
in the real-world experiments. The dataset experiments were used to tune parameters of the
relative localization method, and showed that using the method in real-world conditions is
viable.

Real-world experiments with Micro Aerial Vehicles (MAVs), which are described in
section 5, demonstrated practical usability of the method in two leader-follower scenarios.
In the first scenario a leader MAV was flying along a line, and a second MAV was following it
in one dimension based on object detection of the neural network from an onboard camera.
The experiment lasted 180 s and the average position error of the follower was 1.12 m. This
experiment has shown that the object detection can run onboard the MAV in real-time,
and that it is sufficiently robust to be used to control an MAV position in a real-world
experiment. In the second scenario the leader was flying through a 2D trajectory, and the
other MAV was following it in a static formation using the relative localization method,
described in section 3. This scenario was tested in three experiments and the average RMS
localization error was 2.86 m.

The experiments demonstrated that the system performs well under real-world con-
ditions, and highlighted several areas of possible improvements. One of the sources of
localization error during the experiments was the time delay between taking an image with
the camera and processing it to receive an estimate of the relative position. This is mostly
caused by a transport delay of the image from the camera sensor to the neural network,
and by the processing time of the neural network itself. The image transport delay can be
decreased by using a different camera sensor with a shorter delay. Processing time of the
neural network can be decreased by optimizing the implementation or by using a more suit-
able computing hardware. One option would be the Jetson TX2 [40], which is a platform,
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designed for running convolutional neural networks on embedded hardware, such as MAVs.
Preliminary tests confirmed that the neural network used in this thesis has significantly
shorter processing time on the Jetson TX2 (see Table 1).

Another way to address the problem of the delay is to use a predictor, such as a Kalman
filter, to predict positions of the robots being localized. This would also have the advantage
of inherently filtering outliers in the estimated relative position if the predictor was set up
accordingly. The predictor may estimate relative positions of the localized robots even
when there is no detection from the camera image, generally increasing robustness of the
relative localization. On the other hand, a way of associating a detection in an image with
the correct predictor, corresponding to the detected robot, would have to be devised if
there were multiple robots being localized. This is not trivial since the relative positions,
estimated by the method presented in this paper, are anonymous. False positives would
have to be addressed in a more sophisticated manner to avoid instantiating predictors for
nonexistent robots.

The convolutional neural network (CNN) used in this work is a variation of a general
object detection neural network, which was slightly modified to suit the needs of this
specific application. Its output is a set of bounding boxes and their confidences, where each
bounding box is defined by its center coordinates and its dimensions. The relative locations
of the detected robots are calculated from the bounding boxes using camera projection
techniques. A specialized CNN, designed from scratch for the relative localization task,
might offer superior performance regarding speed and precision. This CNN could be trained
to estimate the distance of the target instead of the dimensions of the bounding box. Such
approach would simplify the neural network, since it would not estimate unused variables
(such as the height of the bounding box or the class probability distribution), and the
training process would be more direct, and thus potentially more effective. Incorporating
some of the changes introduced in the latest iteration of the YOLO neural network [16] into
the CNN structure could improve precision of the object detection. Topics for research in
improving the relative localization method also include using an RGB-D camera such as the
Intel Realsense [59] to get better distance estimation by utilizing the depth information
from the camera, or using multiple cameras facing in different directions to expand the
effective field of view.

The aim of this thesis was to design and implement a real-time onboard visual relative
localization method for robots, based on neural networks, and to verify it in experiments.
This assignment was satisfied, and the developed method has shown good performance, as
was demonstrated in the experiments. The method also has potential for further improve-
ment of precision and robustness, as was discussed in this thesis.
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Appendix A CD Content

Names of all root directories on the attached CD are listed in Table 5.

File name Description
Matous Vrba thesis.pdf Master’s thesis in pdf format.
thesis latex source codes
code scripts, code and other files of the implementation
videos videos from the experiments

Table 5: CD Content

52/54



APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

Abbreviations used in this thesis are listed in Table 6.

Abbreviation Meaning
CNN convolutional neural network
CS coordinate system
DOF degree of freedom
DPM deformable parts model
MAV micro aerial vehicle
NN neural network
NMS non-max suppression
HSL hue saturation lightness
GNSS global navigation satellite system
GPS global positioning system
GPU graphical processing unit
IoU intersection over union
PID proportional integral derivative
SGD stochastic gradient descent
SLAM simultaneous localization and mapping
ReLU rectified linear unit
RGB red green blue
RMS root mean squared
UGV unmanned ground vehicle
UV ultra-violet

Table 6: Lists of abbreviations
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